Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39.210
Filter
1.
Molecules ; 29(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38611955

ABSTRACT

Lumpy Skin Disease (LSD) is a notifiable viral disease caused by Lumpy Skin Disease virus (LSDV). It is usually associated with high economic losses, including a loss of productivity, infertility, and death. LSDV shares genetic and antigenic similarities with Sheep pox virus (SPV) and Goat pox (GPV) virus. Hence, the LSDV traditional diagnostic tools faced many limitations regarding sensitivity, specificity, and cross-reactivity. Herein, we fabricated a paper-based turn-on fluorescent Molecularly Imprinted Polymer (MIP) sensor for the rapid detection of LSDV. The LSDV-MIPs sensor showed strong fluorescent intensity signal enhancement in response to the presence of the virus within minutes. Our sensor showed a limit of detection of 101 log10 TCID50/mL. Moreover, it showed significantly higher specificity to LSDV relative to other viruses, especially SPV. To our knowledge, this is the first record of a paper-based rapid detection test for LSDV depending on fluorescent turn-on behavior.


Subject(s)
Lumpy skin disease virus , Animals , Cattle , Sheep , Molecularly Imprinted Polymers , Coloring Agents , Cross Reactions , Head
2.
Int J Mol Sci ; 25(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38612509

ABSTRACT

Cancer remains a leading cause of mortality worldwide and calls for novel therapeutic targets. Membrane proteins are key players in various cancer types but present unique challenges compared to soluble proteins. The advent of computational drug discovery tools offers a promising approach to address these challenges, allowing for the prioritization of "wet-lab" experiments. In this review, we explore the applications of computational approaches in membrane protein oncological characterization, particularly focusing on three prominent membrane protein families: receptor tyrosine kinases (RTKs), G protein-coupled receptors (GPCRs), and solute carrier proteins (SLCs). We chose these families due to their varying levels of understanding and research data availability, which leads to distinct challenges and opportunities for computational analysis. We discuss the utilization of multi-omics data, machine learning, and structure-based methods to investigate aberrant protein functionalities associated with cancer progression within each family. Moreover, we highlight the importance of considering the broader cellular context and, in particular, cross-talk between proteins. Despite existing challenges, computational tools hold promise in dissecting membrane protein dysregulation in cancer. With advancing computational capabilities and data resources, these tools are poised to play a pivotal role in identifying and prioritizing membrane proteins as personalized anticancer targets.


Subject(s)
Membrane Proteins , Neoplasms , Humans , Cross Reactions , Drug Discovery , Machine Learning , Neoplasms/drug therapy
3.
Int J Mol Sci ; 25(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38612550

ABSTRACT

The bee gut microbiota plays an important role in the services the bees pay to the environment, humans and animals. Alongside, gut-associated microorganisms are vehiculated between apparently remote habitats, promoting microbial heterogeneity of the visited microcosms and the transfer of the microbial genetic elements. To date, no metaproteomics studies dealing with the functional bee microbiota are available. Here, we employ a metaproteomics approach to explore a fraction of the bacterial, fungal, and unicellular parasites inhabiting the bee gut. The bacterial community portrays a dynamic composition, accounting for specimens of human and animal concern. Their functional features highlight the vehiculation of virulence and antimicrobial resistance traits. The fungal and unicellular parasite fractions include environment- and animal-related specimens, whose metabolic activities support the spatial spreading of functional features. Host proteome depicts the major bee physiological activities, supporting the metaproteomics strategy for the simultaneous study of multiple microbial specimens and their host-crosstalks. Altogether, the present study provides a better definition of the structure and function of the bee gut microbiota, highlighting its impact in a variety of strategies aimed at improving/overcoming several current hot topic issues such as antimicrobial resistance, environmental pollution and the promotion of environmental health.


Subject(s)
Anti-Infective Agents , Gastrointestinal Microbiome , Microbiota , One Health , Humans , Bees , Animals , Cross Reactions
4.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38653491

ABSTRACT

Coronaviruses have threatened humans repeatedly, especially COVID-19 caused by SARS-CoV-2, which has posed a substantial threat to global public health. SARS-CoV-2 continuously evolves through random mutation, resulting in a significant decrease in the efficacy of existing vaccines and neutralizing antibody drugs. It is critical to assess immune escape caused by viral mutations and develop broad-spectrum vaccines and neutralizing antibodies targeting conserved epitopes. Thus, we constructed CovEpiAb, a comprehensive database and analysis resource of human coronavirus (HCoVs) immune epitopes and antibodies. CovEpiAb contains information on over 60 000 experimentally validated epitopes and over 12 000 antibodies for HCoVs and SARS-CoV-2 variants. The database is unique in (1) classifying and annotating cross-reactive epitopes from different viruses and variants; (2) providing molecular and experimental interaction profiles of antibodies, including structure-based binding sites and around 70 000 data on binding affinity and neutralizing activity; (3) providing virological characteristics of current and past circulating SARS-CoV-2 variants and in vitro activity of various therapeutics; and (4) offering site-level annotations of key functional features, including antibody binding, immunological epitopes, SARS-CoV-2 mutations and conservation across HCoVs. In addition, we developed an integrated pipeline for epitope prediction named COVEP, which is available from the webpage of CovEpiAb. CovEpiAb is freely accessible at https://pgx.zju.edu.cn/covepiab/.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Epitopes , SARS-CoV-2 , Humans , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/virology , Antibodies, Neutralizing/immunology , Epitopes/immunology , Epitopes/chemistry , Epitopes/genetics , Coronavirus/immunology , Coronavirus/genetics , Databases, Factual , Cross Reactions/immunology
5.
Expert Rev Vaccines ; 23(1): 474-484, 2024.
Article in English | MEDLINE | ID: mdl-38632930

ABSTRACT

INTRODUCTION: Anti-neuraminidase (NA) immunity correlates with the protection against influenza virus infection in both human and animal models. The aim of this review is to better understand the mechanism of anti-NA immunity, and also to evaluate the approaches on developing NA-based influenza vaccines or enhancing immune responses against NA for current influenza vaccines. AREAS COVERED: In this review, the structure of influenza neuraminidase, the contribution of anti-NA immunity to protection, as well as the efforts and challenges of targeting the immune responses to NA were discussed. We also listed some of the newly discovered anti-NA monoclonal antibodies and discussed their contribution in therapeutic as well as the antigen design of a broadly protective NA vaccine. EXPERT OPINION: Targeting the immune response to both HA and NA may be critical for achieving the optimal protection since there are different mechanisms of HA and NA elicited protective immunity. Monoclonal antibodies (mAbs) that target the conserved protective lateral face or catalytic sites are effective therapeutics. The epitope discovery using monoclonal antibodies may benefit NA-based vaccine elicited broadly reactive antibody responses. Therefore, the potential for a vaccine that elicits cross-reactive antibodies against neuraminidase is a high priority for next-generation influenza vaccines.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , Influenza Vaccines , Influenza, Human , Neuraminidase , Humans , Neuraminidase/immunology , Influenza, Human/prevention & control , Influenza, Human/immunology , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Antibodies, Monoclonal/immunology , Animals , Antibodies, Viral/immunology , Vaccine Development , Cross Reactions/immunology , Epitopes/immunology
6.
Curr Opin Allergy Clin Immunol ; 24(3): 129-137, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38529801

ABSTRACT

PURPOSE OF REVIEW: Precision medicine has become important in the diagnosis and management of food allergies. This review summarizes the latest information regarding molecular allergology, an essential component of food allergy managements. RECENT FINDINGS: Component-resolved diagnostics (CRD) can be used to investigate sensitization to allergens based on symptoms and to reveal co-sensitization and/or cross-sensitization in patients with allergies. The following allergen components are known to be associated with symptoms: ovomucoid from eggs, omega-5 gliadin from wheat, and many storage proteins (Gly m 8 from soy, Ara h 2 from peanut, Cor a 14 from hazelnut, Ana o 3 from cashew nut, Jug r 1 from walnut, and Ses i 1 from sesame). Recent studies on allergens of macadamia nuts (Mac i 1 and Mac i 2), almonds (Pru du 6), fish (parvalbumin and collagen), and shrimp (Pem m 1 and Pem m 14) have provided additional information regarding CRD. In addition, Pru p 7 is a risk factor for systemic reactions to peaches and has recently been found to cross-react with cypress and Japanese cedar pollen. SUMMARY: CRD provides information of individualized sensitization profiles related to symptoms and severity of allergies in patients. Clinical practice based on CRD offers many benefits, such as higher diagnostic accuracy and improved management of individual patients.


Subject(s)
Allergens , Food Hypersensitivity , Precision Medicine , Humans , Food Hypersensitivity/diagnosis , Food Hypersensitivity/immunology , Allergens/immunology , Precision Medicine/methods , Cross Reactions/immunology , Animals , Molecular Diagnostic Techniques/methods
7.
J Agric Food Chem ; 72(14): 8189-8199, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38551197

ABSTRACT

Protein from Sichuan peppers can elicit mild to severe allergic reactions. However, little is known about their allergenic proteins. We aimed to isolate, identify, clone, and characterize Sichuan pepper allergens and to determine its allergenicity and cross-reactivities. Sichuan pepper seed proteins were extracted and then analyzed by SDS-PAGE. Western blotting was performed with sera from Sichuan pepper-allergic individuals. Proteins of interest were purified using hydrophobic interaction chromatography and gel filtration and further analyzed by analytical ultracentrifugation, circular dichroism spectroscopy, and mass spectrometry (MS). Their coding region was amplified in the genome. IgE reactivity and cross-reactivity of allergens were evaluated by dot blot, enzyme-linked immunosorbent assay (ELISA), and competitive ELISA. Western blot showed IgE binding to a 55 kDa protein. This protein was homologous to the citrus proteins and has high stability and a sheet structure. Four DNA sequences were cloned. Six patients' sera (60%) showed specific IgE reactivity to this purified 11S protein, which was proved to have cross-reactivation with extracts of cashew nuts, pistachios, and citrus seeds. A novel allergen in Sichuan pepper seeds, Zan b 2, which belongs to the 11S globulin family, was isolated and identified. Its cross-reactivity with cashew nuts, pistachios, and citrus seeds was demonstrated.


Subject(s)
Allergens , Nut Hypersensitivity , Humans , Allergens/genetics , Allergens/chemistry , 60654 , Plant Proteins/genetics , Plant Proteins/chemistry , Cross Reactions , Cloning, Molecular , Immunoglobulin E/metabolism
9.
Sci Rep ; 14(1): 5970, 2024 03 12.
Article in English | MEDLINE | ID: mdl-38472293

ABSTRACT

Despite clinical and epidemiological evidence suggestive of a link between glioblastoma (GBM) and periodontitis (PD), the shared mechanisms of gene regulation remain elusive. In this study, we identify differentially expressed genes (DEGs) that overlap between the GEO datasets GSE4290 [GBM] and GSE10334 [PD]. Functional enrichment analysis was conducted, and key modules were identified using protein-protein interaction (PPI) network and weighted gene co-expression network analysis (WGCNA). The expression levels of CXCR4, LY96, and C3 were found to be significantly elevated in both the test dataset and external validation dataset, making them key crosstalk genes. Additionally, immune cell landscape analysis revealed elevated expression levels of multiple immune cells in GBM and PD compared to controls, with the key crosstalk genes negatively associated with Macrophages M2. FLI1 was identified as a potential key transcription factor (TF) regulating the three key crosstalk genes, with increased expression in the full dataset. These findings contribute to our understanding of the immune and inflammatory aspects of the comorbidity mechanism between GBM and PD.


Subject(s)
Glioblastoma , Periodontitis , Humans , Cross Reactions , Gene Expression , Gene Expression Profiling , Computational Biology , Gene Regulatory Networks
10.
Int J Mol Sci ; 25(5)2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38473916

ABSTRACT

Phalaenopsis orchids are one of the most popular ornamental plants. More than thirty orchid viruses have been reported, and virus-infected Phalaenopsis orchids significantly lose their commercial value. Therefore, the development of improved viral disease detection methods could be useful for quality control in orchid cultivation. In this study, we first utilized the MinION, a portable sequencing device based on Oxford Nanopore Technologies (ONT) to rapidly detect plant viruses in Phalaenopsis orchids. Nanopore sequencing revealed the presence of three plant viruses in Phalaenopsis orchids: odontoglossum ringspot virus, cymbidium mosaic virus, and nerine latent virus (NeLV). Furthermore, for the first time, we detected NeLV infection in Phalaenopsis orchids using nanopore sequencing and developed the reverse transcription-recombinase polymerase amplification (RT-RPA)-CRISPR/Cas12a method for rapid, instrument-flexible, and accurate diagnosis. The developed RT-RPA-CRISPR/Cas12a technique can confirm NeLV infection in less than 20 min and exhibits no cross-reactivity with other viruses. To determine the sensitivity of RT-RPA-CRISPR/Cas12a for NeLV, we compared it with RT-PCR using serially diluted transcripts and found a detection limit of 10 zg/µL, which is approximately 1000-fold more sensitive. Taken together, the ONT platform offers an efficient strategy for monitoring plant viral pathogens, and the RT-RPA-CRISPR/Cas12a method has great potential as a useful tool for the rapid and sensitive diagnosis of NeLV.


Subject(s)
Amaryllidaceae , Latent Infection , Nanopore Sequencing , Orchidaceae , CRISPR-Cas Systems , Cross Reactions , Recombinases
11.
Mol Nutr Food Res ; 68(5): e2300420, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38332580

ABSTRACT

SCOPE: Edible insects contain allergens with potential cross-reactivity to other invertebrates. Here, this study examines IgE-reactive proteins in a house cricket snack (Acheta domesticus) leading to an allergic reaction in a 27-year old man followed by a similar reaction days later after eating shrimps. METHODS AND RESULTS: Prick to prick tests verify the IgE-mediated allergy to crickets and skin prick testing confirms a type I sensitization to house dust mite without any clinical relevance for the patient, and to shrimp extracts, but is negative for several other foods. Serological testing reveals a sensitization to shrimps, shrimp tropomyosin, and house dust mite tropomyosin. IgE-immunodetection shows that the cricket allergic patient is sensitized to two proteins of 45 and >97 kDa using aqueous control cricket extract, but to only one protein at around 45 kDa when using the causative, seasoned insect snack extract. Mass spectrometry data and IgE-inhibition experiments clearly identify this protein belonging to the tropomyosin allergen family. CONCLUSION: This case report suggests that cricket tropomyosin may be an elicitor of allergic reactions even in previously not allergic patients, although it cannot be excluded the patient reacted additionally to other ingredients of the snack.


Subject(s)
Food Hypersensitivity , Gryllidae , Hypersensitivity , Male , Animals , Humans , Adult , Tropomyosin , Snacks , Hypersensitivity/etiology , Hypersensitivity/diagnosis , Allergens , Immunoglobulin E , Cross Reactions , Food Hypersensitivity/etiology
12.
Int J Biol Macromol ; 262(Pt 1): 129972, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38336314

ABSTRACT

BACKGROUND: Blomia tropicalis (B. tropicalis) has been reported to impose an increased risk of allergic diseases. However, few characteristics of the unknown allergen components responsible for B. tropicalis allergy and clinical relevance have been fully identified. METHODS: We synthesized and characterized the physicochemical properties and cross-reactivity of the newly discovered recombinant B. tropicalis group 41 allergen (rBlo t 41). Subsequently, sera were collected from 107 B. tropicalis allergic subjects to evaluate the prevalence of the rBlo t 41. Lastly, its allergenicity was tested in humans by basophil activation assays, and in mice by a model of allergic asthma. RESULTS: The mature protein of rBlo t 41 was described as 104 amino acids long and 15.8 kDa, and its limited cross-reactivity was observed between allergens of house dust mites (HDM). Sensitization rate of rBlo t 41 (56.07 %) was lower than rBlo t 2 (76.29 %) and rBlo t 5 (69.07 %) in our study. Besides, rBlo t 41 elicited CD63 upregulation in basophils, whereas rBlo t 41-sensitized mice generated rBlo t 41-IgE and developed allergic airway inflammation after allergen exposure. Of note, component-based tests showed a high area under curve value (AUC = 0.75) of rBlo t 41, displaying its favorable diagnostic potential in B. tropicalis allergy. CONCLUSIONS: rBlo t 41 was identified as a candidate novel major allergen with good diagnostic potential in B. tropicalis sensitization. Additionally, we provided strong evidence about rBlo t 41 on the clinically relevant manifestations in B. tropicalis allergies, conducive to facilitating the development of component-resolved diagnosis.


Subject(s)
Asthma , Hypersensitivity , Humans , Mice , Animals , Allergens/chemistry , Cross Reactions , Inflammation , Chitin
14.
J Med Virol ; 96(2): e29443, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38373154

ABSTRACT

Cross-neutralizing activity of human antibody response against Dengue virus complex (DENV) changes importantly over time. Domain III (DIII) of the envelope protein of DENV elicits a potently neutralizing and mostly type-specific IgG response. We used sera from 24 individuals from early- or late convalescence of DENV1 infection to investigate the evolution of anti-DIII human IgG with the time lapse since the infection. We evaluated the correlation between the serotype-specific reactivity against recombinant DIII proteins and the neutralization capacity against the four serotypes, and examined its behavior with the time of convalescence. Also, we use a library of 71 alanine mutants of surface-exposed amino acid residues to investigate the dominant epitopes. In early convalescence anti-DIII titers and potency of virus neutralization were positively associated with correlation coefficients from 0.82 to 1.0 for the four serotypes. For late convalescence, a positive correlation (r = 0.69) was found only for DENV1. The dominant epitope of the type-specific response is centered in the FG-loop (G383, E384, and K385) and includes most of the lateral ridge. The dominant epitope of the anti-DIII cross-reactive IgG in secondary infections shifts from the A-strand during early convalescence to a site centered in residues E314-H317 of the AB-loop and I352-E368 of the DI/DIII interface, in late convalescence. An immunoassay based on the detection of IgG anti-DIII response can be implemented for detection of infecting serotype in diagnosis of DENV infection, either primary or secondary. Human dominant epitopes of the cross-reactive circulating antibodies change with time of convalescence.


Subject(s)
Dengue Virus , Dengue , Humans , Epitopes , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , Convalescence , Viral Envelope Proteins , Recombinant Proteins/metabolism , Immunoglobulin G/metabolism , Cross Reactions
15.
Zhonghua Yu Fang Yi Xue Za Zhi ; 58(2): 268-274, 2024 Feb 06.
Article in Chinese | MEDLINE | ID: mdl-38387961

ABSTRACT

With the increasing global prevalence of tree pollen allergies, there has been a significant impact on the quality of life for populations. In North and Central China, birch pollen, cypress pollen, and plane tree pollen are the most common allergens for springtime pollen allergy sufferers. The distribution of plants and patterns of pollen transmission in different geographical areas result in varying pollen exposure outcomes, further complicating the challenges in diagnosis and individualized treatment. This article delves into the research progress and clinical application of tree pollen allergies based on the "Molecular Allergology User's Guide 2.0 (MAUG 2.0) " published by the European Academy of Allergy and Clinical Immunology (EAACI). It discusses major allergen families and component proteins of tree pollen such as PR-10 proteins, profilins, polcalcins, as well as cross-reactive components that may cause pollen-food allergy syndrome. Allergen component diagnostics can distinguish true allergy sufferers from those with multiple allergen reactions, enabling more targeted selection of allergens for specific immunotherapy, thus enhancing treatment effectiveness. Bet v 1 and Cup a 1, for instance, are specific indicators for immunotherapy in birch and cypress allergy patients. Overall, this article provides cutting-edge information for professionals in the field of tree pollen allergies, offering in-depth exploration of tree pollen allergen component proteins, clinical manifestations, and treatment-related research, aiding in better understanding and addressing the challenges of tree pollen allergies.


Subject(s)
Food Hypersensitivity , Rhinitis, Allergic, Seasonal , Humans , Allergens , Rhinitis, Allergic, Seasonal/diagnosis , Rhinitis, Allergic, Seasonal/therapy , Trees/adverse effects , Quality of Life , Pollen , Cross Reactions
16.
mBio ; 15(3): e0316023, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38349142

ABSTRACT

Immunodominant and highly conserved flavivirus envelope proteins can trigger cross-reactive IgG antibodies against related flaviviruses, which shapes subsequent protection or disease severity. This study examined how prior dengue serotype 3 (DENV-3) infection affects subsequent Zika virus (ZIKV) plasmablast responses in rhesus macaques (n = 4). We found that prior DENV-3 infection was not associated with diminished ZIKV-neutralizing antibodies or magnitude of plasmablast activation. Rather, characterization of 363 plasmablasts and their derivative 177 monoclonal antibody supernatants from acute ZIKV infection revealed that prior DENV-3 infection was associated with a differential isotype distribution toward IgG, lower somatic hypermutation, and lesser B cell receptor variable gene diversity as compared with repeat ZIKV challenge. We did not find long-lasting DENV-3 cross-reactive IgG after a ZIKV infection but did find persistent ZIKV-binding cross-reactive IgG after a DENV-3 infection, suggesting non-reciprocal cross-reactive immunity. Infection with ZIKV after DENV-3 boosted pre-existing DENV-3-neutralizing antibodies by two- to threefold, demonstrating immune imprinting. These findings suggest that the order of DENV and ZIKV infections has impact on the quality of early B cell immunity which has implications for optimal immunization strategies. IMPORTANCE: The Zika virus epidemic of 2015-2016 in the Americas revealed that this mosquito-transmitted virus could be congenitally transmitted during pregnancy and cause birth defects in newborns. Currently, there are no interventions to mitigate this disease and Zika virus is likely to re-emerge. Understanding how protective antibody responses are generated against Zika virus can help in the development of a safe and effective vaccine. One main challenge is that Zika virus co-circulates with related viruses like dengue, such that prior exposure to one can generate cross-reactive antibodies against the other which may enhance infection and disease from the second virus. In this study, we sought to understand how prior dengue virus infection impacts subsequent immunity to Zika virus by single-cell sequencing of antibody producing cells in a second Zika virus infection. Identifying specific qualities of Zika virus immunity that are modulated by prior dengue virus immunity will enable optimal immunization strategies.


Subject(s)
Dengue Virus , Dengue , Flavivirus , Zika Virus Infection , Zika Virus , Animals , Macaca mulatta , Serogroup , Antibodies, Viral , Immunoglobulin G , Antibodies, Neutralizing , Cross Reactions
17.
Front Immunol ; 15: 1247382, 2024.
Article in English | MEDLINE | ID: mdl-38343546

ABSTRACT

Purpose: The pathogenesis of renal fibrosis (RF) involves intricate interactions between profibrotic processes and immune responses. This study aimed to explore the potential involvement of the pyroptosis signaling pathway in immune microenvironment regulation within the context of RF. Through comprehensive bioinformatics analysis and experimental validation, we investigated the influence of pyroptosis on the immune landscape in RF. Methods: We obtained RNA-seq datasets from Gene Expression Omnibus (GEO) databases and identified Pyroptosis-Associated Regulators (PARs) through literature reviews. Systematic evaluation of alterations in 27 PARs was performed in RF and normal kidney samples, followed by relevant functional analyses. Unsupervised cluster analysis revealed distinct pyroptosis modification patterns. Using single-sample gene set enrichment analysis (ssGSEA), we examined the correlation between pyroptosis and immune infiltration. Hub regulators were identified via weighted gene coexpression network analysis (WGCNA) and further validated in a single-cell RNA-seq dataset. We also established a unilateral ureteral obstruction-induced RF mouse model to verify the expression of key regulators at the mRNA and protein levels. Results: Our comprehensive analysis revealed altered expression of 19 PARs in RF samples compared to normal samples. Five hub regulators, namely PYCARD, CASP1, AIM2, NOD2, and CASP9, exhibited potential as biomarkers for RF. Based on these regulators, a classifier capable of distinguishing normal samples from RF samples was developed. Furthermore, we identified correlations between immune features and PARs expression, with PYCARD positively associated with regulatory T cells abundance in fibrotic tissues. Unsupervised clustering of RF samples yielded two distinct subtypes (Subtype A and Subtype B), with Subtype B characterized by active immune responses against RF. Subsequent WGCNA analysis identified PYCARD, CASP1, and NOD2 as hub PARs in the pyroptosis modification patterns. Single-cell level validation confirmed PYCARD expression in myofibroblasts, implicating its significance in the stress response of myofibroblasts to injury. In vivo experimental validation further demonstrated elevated PYCARD expression in RF, accompanied by infiltration of Foxp3+ regulatory T cells. Conclusions: Our findings suggest that pyroptosis plays a pivotal role in orchestrating the immune microenvironment of RF. This study provides valuable insights into the pathogenesis of RF and highlights potential targets for future therapeutic interventions.


Subject(s)
Computational Biology , Pyroptosis , Animals , Mice , Cross Reactions , Caspase 1 , Cluster Analysis
18.
JCI Insight ; 9(3)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38175703

ABSTRACT

Immunoglobulin (IG) replacement products are used routinely in patients with immune deficiency and other immune dysregulation disorders who have poor responses to vaccination and require passive immunity conferred by commercial antibody products. The binding, neutralizing, and protective activity of intravenously administered IG against SARS-CoV-2 emerging variants remains unknown. Here, we tested 198 different IG products manufactured from December 2019 to August 2022. We show that prepandemic IG had no appreciable cross-reactivity or neutralizing activity against SARS-CoV-2. Anti-spike antibody titers and neutralizing activity against SARS-CoV-2 WA1/2020 D614G increased gradually after the pandemic started and reached levels comparable to vaccinated healthy donors 18 months after the diagnosis of the first COVID-19 case in the United States in January 2020. The average time between production to infusion of IG products was 8 months, which resulted in poor neutralization of the variant strain circulating at the time of infusion. Despite limited neutralizing activity, IG prophylaxis with clinically relevant dosing protected susceptible K18-hACE2-transgenic mice against clinical disease, lung infection, and lung inflammation caused by the XBB.1.5 Omicron variant. Moreover, following IG prophylaxis, levels of XBB.1.5 infection in the lung were higher in FcγR-KO mice than in WT mice. Thus, IG replacement products with poor neutralizing activity against evolving SARS-CoV-2 variants likely confer protection to patients with immune deficiency disorders through Fc effector function mechanisms.


Subject(s)
COVID-19 , Humans , Animals , Mice , COVID-19/prevention & control , SARS-CoV-2 , Antibodies , Cross Reactions , Mice, Transgenic
19.
Clin Transl Med ; 14(1): e1545, 2024 01.
Article in English | MEDLINE | ID: mdl-38264932

ABSTRACT

BACKGROUND: The impact of fibroblasts on the immune system provides insight into the function of fibroblasts. In various tissue microenvironments, multiple fibroblast subtypes interact with immunocytes by secreting growth factors, cytokines, and chemokines, leading to wound healing, fibrosis, and escape of cancer immune surveillance. However, the specific mechanisms involved in the fibroblast-immunocyte interaction network have not yet been fully elucidated. MAIN BODY AND CONCLUSION: Therefore, we systematically reviewed the molecular mechanisms of fibroblast-immunocyte interactions in fibrosis, from the history of cellular evolution and cell subtype divisions to the regulatory networks between fibroblasts and immunocytes. We also discuss how these communications function in different tissue and organ statuses, as well as potential therapies targeting the reciprocal fibroblast-immunocyte interplay in fibrosis. A comprehensive understanding of these functional cells under pathophysiological conditions and the mechanisms by which they communicate may lead to the development of effective and specific therapies targeting fibrosis.


Subject(s)
Cytokines , Fibroblasts , Humans , Cross Reactions , Cell Division , Fibrosis
20.
Elife ; 122024 Jan 23.
Article in English | MEDLINE | ID: mdl-38261357

ABSTRACT

Hox gene clusters encode transcription factors that drive regional specialization during animal development: for example the Hox factor Ubx is expressed in the insect metathoracic (T3) wing appendages and differentiates them from T2 mesothoracic identities. Hox transcriptional regulation requires silencing activities that prevent spurious activation and regulatory crosstalks in the wrong tissues, but this has seldom been studied in insects other than Drosophila, which shows a derived Hox dislocation into two genomic clusters that disjoined Antennapedia (Antp) and Ultrabithorax (Ubx). Here, we investigated how Ubx is restricted to the hindwing in butterflies, amidst a contiguous Hox cluster. By analysing Hi-C and ATAC-seq data in the butterfly Junonia coenia, we show that a Topologically Associated Domain (TAD) maintains a hindwing-enriched profile of chromatin opening around Ubx. This TAD is bordered by a Boundary Element (BE) that separates it from a region of joined wing activity around the Antp locus. CRISPR mutational perturbation of this BE releases ectopic Ubx expression in forewings, inducing homeotic clones with hindwing identities. Further mutational interrogation of two non-coding RNA encoding regions and one putative cis-regulatory module within the Ubx TAD cause rare homeotic transformations in both directions, indicating the presence of both activating and repressing chromatin features. We also describe a series of spontaneous forewing homeotic phenotypes obtained in Heliconius butterflies, and discuss their possible mutational basis. By leveraging the extensive wing specialization found in butterflies, our initial exploration of Ubx regulation demonstrates the existence of silencing and insulating sequences that prevent its spurious expression in forewings.


Subject(s)
Butterflies , Homeodomain Proteins , Transcription Factors , Animals , Butterflies/genetics , Chromatin , Clone Cells , Clustered Regularly Interspaced Short Palindromic Repeats , Cross Reactions , Homeodomain Proteins/genetics , Transcription Factors/genetics , Insect Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...